DOT/FAA/AR-98/72 Evaluation of Technologies for the
Offceof Aviation Reseateh Design of a Prototype In-Flight
| Remote Aircraft Icing Potential
Detection System

December 1998
Final Report
This document is available to the U.S. public

through the National Technical Information
Service (NTIS), Springfield, Virginia 22161.

)

U.S. Department of Transportation
Federal Aviation Administration



NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange.
The United States Government assumes no liability for the contents or
use thereof. The United States Government does not endorse
products or manufacturers. Trade or manufacturer's names appear

herein solely because they are considered essential to the objective of
this report.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center's Full-Text Technical Reports page:
www.tc.faa.gov/its/actl41/reportpage.html in Adobe Acrobat portable
document format (PDF).



Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

DOT/FAA/AR-98/72

4. Title and Subtitle 5. Report Date

EVALUATION OF TECHNOLOGIES FOR THE DESIGN OF A PROTOTYPE | December 1998

IN-FLIGHT REMOTE AIRCRAFT ICING POTENTIAL DETECTION SYSTEM | 8- Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

James B. Mead, Andrew Pazmany, and Mark Goodberlet

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

Quadrant Engineering Inc.
107 Sunderland Road

Amherst, MA 01002 11. Contract or Grant No.
DACA39-97-M-1476

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

U.S. Department of Transportation Final Report

Federal Aviation Administration

Office of Aviation Research 14. Sponsoring Agency Code

Washington, DC 20591 AIR-100

15. Supplementary Notes

The Federal Aviation Administration William J. Hughes Technical Center COTR was Edward Pugacz.

Administered byJS Army Cold Regions Research and Engineering Laboratory, Snow and Ice Division, Hanover, NH 03755-1290

16. Abstract

icing potential detection. The long-term goal is to develop an aircraft mounted sensor capable of detecting dangerdu
supercooled liquid water tens of kilometers ahead of the aircraft. Instruments capable of mapping range profiles ofictl
water content and mean particle size were investigated, specifically multifrequency radar and lidar (light detection ghd
Multifrequency radar proved to be the most promising method for detecting liquid water content and parameters relatkd
size. Backscattered power measurements at one, two, and three frequencies were input to a neural network trained
liquid water content and two sizing parameters. This investigation showed that both two- and three-frequency radargow

highest for the three-frequency algorithm, especially in the estimation of liquid water content. Instruments capablengf
horizontal profiles of air temperature were also investigated, because they potentially provide a means of detecting
warmer air, free of supercooled drops. The technologies studied for temperature profiling were oxygen band radiom

current program.

This document presents the results of an investigation of remote sensing technologies applicable to the problem of edirjote aircr

5 levels ©
bud liqu
rangin
to partic
to estim:
ere able

extract liquid water content and particle size parameters for various trial distributions of clouds and precipitationy WwesUrac

orovid
regions o
btry and e

radar-acoustic sensor. Neither of these technologies was deemed promising enough to warrant further development within th

17. Key Words 18. Distribution Statement

Multifrequency radar, Remote sensing, Liquid water conteptDocument is available to the public through the National
Technical Information Service (NTIS), Springfield, Virginia
22161.

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 83
Form DOT F1700.7 (8-72) Reproduction of completed page authorized




TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY Xi
1 INTRODUCTION 1
1.1 Multiparameter Radar 1

1.2 Polarimetrid.idar 2

1.3 Temperature Profiling Techniques 2

2 MULTIPARAMETER RADAR 2
2.1 Radar Confyuration 3

2.2  Neural Network Classification of Particle Paneters 5

2.2.1 Training and Test Data 9

2.22 Drop-Size Distributions 10

2.23 Inversion of Particle Paranses With Randohy Varying Conditions 13

2.24 Simulation of Stratutayer 15
2.2.5 Modified Gamma Distributions Used to Reggat All Clouds,
Rain, and Drizzle 17
2.2.6 Summay of Multifrequercy Inversion Stdy 21
2.3  Polarimetric Radar 23
2.4  Scannig Strategy 26
2.5 Signal-to-Noise Anlysis 29
2.5.1 Minimum Detectable Particle Size 31
2.5.2 Statistical Angysis of Rage Performace 33
2.53 Sensitivty of Solid-State Radar 34
3 LIDAR 37
4 TEMPERATURE PROFIING 40
4.1 Oxygen Band Radiometry 40
4.2  Temperature Profilig Using RASS 41

4.3  Summay of Temperature ProfiligpResearch 44



5 MULTIFREQUENCY RADOME AND LOSSES DUE TGCE AND WATER
6 PROPOSED PROTOTYPE SYSTEM DESN

7 CONCLUSIONS

8 BIBLIOGRAPHY

9 GLOSSARY

APPENDCES

ALl Atmospheric Temperature Profigrioy Radioméers
B[ Front-EndLoss Effects on RadiometBerformance

44

48

51

52

54



Figure

10

11

12

13

14

15

16

LIST OF FIGURES
Page
Geometry for Airborne Multifrequency Radar 3

Using a Single Multiple-Frequency Feed Horn to Generate Colocated Beams at

Several Frequencies 4
Pulsed and FM-CW Radar Configurations 5
Neural Network Estimation of Cloud Parameters Is Derived Solely From Measured
Profiles of Reflectivity, 41— Zmsat One, Two, or Three Frequencies 7
Network Topology for Single Input Frequency Neural Network 8
Simulation Software Flow Chart 9

Typical Particle Diameter Distributiopg(d), Associated Volume Distribution,

pv(d), and Reflectivity Distributionp,(d) 11
Range of Distribution Shapes for Smallest Mode Radius 12
Range of Distribution Shapes for Drizzle 12
Range of Distribution Shapes for Rain 13

Scatter Plot of dBZ Versus MVD and Liquid Water Content for the Training Data
Set and Test Data Set 14

Scatter Plots of Estimated Versus Input Liquid Water Content, MVD, and MZD
for Totally Random Profile of Cloud and Precipitation Conditions Using One
Frequency, Two Frequencies, and Three Frequencies 16

Scatter Plots of Estimated Versus Input Liquid Water Content, MVD, and MZD
for Stratus Layer With 90 Percent Profile-to-Profile Overlap of Cloud Conditions
Using One Frequency, Two Frequencies, and Three Frequencies 18

Scatter Plots of Estimated Versus Input Liquid Water Content, MVD, and MZD
for Stratus Layer With 75 Percent Profile-to-Profile Overlap of Cloud Conditions
Using One Frequency, Two Frequencies, and Three Frequencies 20

Results for Cloud, Drizzle, and Rain Model Using Modified Gamma Distributions
Using One Frequency, Two Frequencies, and Three Frequencies 22

Sector Scan With Three-Frequency Radar 26



17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Beam Averaging to Achieve Common Sample Volume 27
Number of Averages Versus Maximum Range With Update Rate as a Parameter 28

Cloud Reflectivity in dBZ as a Function of Liquid Water Content With Particle
Size as a Parameter 30

Atmospheric Extinction Due to Scattering and Absorption by Liquid Water

at @C 31
Minimum Detectable Particle Diameter Versus Range With Liquid Water Content

as a Parameter at 10, 35, and 95 GHz 32
Cumulative Distribution Function and Highest 20 Percent of CDF for Simulated

Cloud Liquid Water Content 33
Simulated Temperature Distribution 33
Typical Range Profiles of Liquid Water and Temperature 34
Minimum Detectable Reflectivity Versus Range With Simulated Cloud Liquid and
Temperature Distribution at 10, 35, and 95 GHz for a Tube-Powered System 35
Minimum Detectable Reflectivity for Solid-State Radars With Simulated Cloud

Liquid and Temperature Distribution at 10, 35, and 95 GHz 36
Optical Extinction Coefficient for Liquid Water Contents Between 0.001 and

1 gram/Cubic Meter 37
Liquid Water Content Versus Rain Rate 38
Large Droplet Particle Sizing Using Three-Frequency Neural Network and Three-
Frequency Neural Network Plus Lidar 39
Radar Acoustic Sounding System Concept 41
Airborne RASS Concept 42
Airborne RASS Geometry 42
Phase Error in Degrees Versus lllumination Arthle 43
RASS SNR Versus Range 44
Radome Showing Ice and Water Buildup 45

Vi



36

37

38

39

40

41

42

One-Way Transmission Loss of Dry Radome and Radome Coated With 1 cm of Ice
and 0.3 mm of Water 46

Transmission Loss as a Function of Ice Thickness 46
Transmission Loss as a Function of Ice Thickness With 0.3-mm Coating of Water a7

Transmission Loss as a Function of Water Thickness Assuming Ice Thickness

of 1 cm 47
Transmission Loss as a Function of Water Thickness Without Ice 48
System Block Diagram of the Proposed Multifrequency Radar 49
Receiver Block Diagram 50

vii



Table

LIST OF TABLES

Page
Summary of Estimation Errors for One-, Two-, and Three-Frequency Radar
Estimates of Liquid Water Content, MVD, and MZD 24
Absorption Due to Water Vapor for Saturation Conditions at 800 mb 30

Parameters for a High-Powered, Tube-Pulsed Radar Used in Estimating Range
Performance of Multifrequency Radar 31

Parameters Used in Estimating Range Performance of Solid-State FM-CW

Multifrequency Radar 34
Conditions for Evaluating Equation 31 43
Conditions Used in Predicting SNR for Airborne RASS 44
Specifications for the Proposed Multiparameter Radar 50

viii



—“Q.Q.]OO;QEUJCT

—
k]

> X & & O <

33;_

DEFINITION OF VARIABLES

bias factor in radiometric calibration
two-way atmospheric attenuation (dB)

shape parameter for gamma distribution; larger values gifeld a narrower distribution,

also averaging kernel in appendix A

shape parameter for the Marshall-Palmer distribution; also calibration bias term in

appendix B
receiver bandwidth (Hz)
antenna beamwidth (radians)

antenna beamwidth at X-band (radians)
speed of light (2.997x£aneters/second)

correlation factor (0€<1) to determine overlap between range gates

variable used to express linear depolarization ratio in lidar

particle diameter (m)
frequency (Hertz)
radar pulse repetition frequency (often PRF)

shape parameter for gamma distribution, larger valugsytgld narrower distributions

antenna gain
electromagnetic wavenumber (radians/m)
extinction due to liquid water (dB/km)

complex quantity related to the index of refraction of water or ice

electromagnetic wavelength (m)

ice ohmic loss

atmospheric loss (dB/km)

liquid water contentg(m>)

volume backscattering coefficiefr? )

index of refraction

number of input nodes in neural network

number of range gates sampled by neural network
number of frequencies sampled by neural network
number of parameters output by neural network
number of output nodes in neural network



p(r)
Py
I:)rmin

le

Rmax
R

number of radar samples averaged (power average)

number density parameter for the Marshall-Palmer distribution

general angular variable

scan range in azimuth (radians)

scan range in elevation (radians)

drop size distribution (number of drops per cubic meter per meter diameter)
transmit power (W)

minimum detectable received power (W)

mode radius (radius corresponding to the peak value of the drop size distribution)
particle radius [t m); also ice reflective loss (appendix B)

radar range (m)

maximum unambiguous radar range (m), determinefg. by

rain rate (mm/hr)

SDTB s$andard deviation of the measured brightness temperature (K)

Lr

pulse length (s)

general angular variable

time variable (s)

time traveled by aircraft during acoustic propagation
temperature (K)

antenna temperature (K)

brightness temperature of radiometer propagating toward antenna (K)
time required to scan entire sample volume (s)
system noise temperature (K)

radiometric temperature measurement precision, (K)
aircraft velocity (m/s)

speed of sound (m/s)

cloud reflectivity (mnfm?®). Z,, is the copolarized reflectivity for transmission and
reception of vertical polarizatioZyy, is the copolarized reflectivity for transmission and
reception of horizontal polarizationZ,, is the cross-polarized reflectivity, for
transmission of horizontal and reception of vertical polarization.

differential reflectivity, equal to the ratio dfy, to Z,



EXECUTIVE SUMMARY

This document presents the results of an ingasbn of remote seng) technobgies applicable

to the problem of aircraft ing potentialdetection. The Ing-tem goal is to developraaircraft-
mounted sensor pable of detecthg dangerous levels of gercoded liquid water tens of
kilometers aheadf the aircraft. Clouds with supercooled liquid waézhibit a potential for

icing that is a faction of water content, and to sordegree, the mae of droplet diameters

[14 CFR Part 25 Appendix C]. Appendix C conditions are dangerous to aircraft without ice
protection; however, they are notng@rous to most aircraft with ice protectiomnstruments
capableof mapping cloud liquid water content and mean particle size were igatstl.
Furthernore, instruments gaable ofprobing air temperature were also investigated, in as much
as thg may provide a means afetectng regions of warmer air where drops are not supercooled.

REMOTE SENSING OF DRAPLET SIZE AND LIQUID WATER CONTENT.

Two technobgies were ealuated for estimation of cloud particle size and water content,
specificaly, multiparaméer radat and lidar (lght detection and rang). Multifrequercy radar
proved to be the most promising method. ndural network was trained to estimate cloud
parameters usindackscattered powemeasurements at one, two, anfeé frequencies,
spanning 10 to 95 GHz. Theetwork was trained to measure liquid water content and two
sizing parameters: the diameter corresponding tontban drop volume and the diameter
correspondig to the mean dar reflectivty. In all cases the nge resolution was set to 2 km,
although rage perfomance carbe tradedoff against measureent precision if finer naging is
required. This invesation showed that both two- and three-freuyeradars were able to
extract liquid water content anghrticle size parametefor various trial distributions of clouds
and precipitation. Erromalysis showed from 25% to 100% impement in estimation of liquid
water corent for the three-fragerncy radar as compared to aad-frequercy sensor.

For long range sensig of cloud parmeters, optical attenuation in clouds is too high for lidar to
be used as d@and-alone instrument. Addj a lidar diannel to the three-freqoey radar neural
network agorithm yielded a small improvement in particle sizing. However, this iy on
applicable to conditions of low optical attextion, such as in drizzle below the cloud baske T
addition of a lidar channel will be of limited valugiven the inabiliy of lidar to penetrate
opticaly thick cloud ayers.

POLARIMETRIC RADAR.

Polarimetric research radars can measure up to nine independent scpftexinéers related to

the shape andrientation of cloud particles. The parameters areseful in detectg the
presence of certain ice habits, hail, and large liquid droplets. Due to their small size, supercooled
liquid cloud droplets are ndgrsphercal and therafre present a urofm polarimetric ggnature
showing no deparization. The main advantage of dgronetric radar is its abily to detect the
presence of ice in méd-phase clouds. This information daused in inversionlgorithms to
improve particle size estimates that are biased to largersizbe presence of ice.

A multiparameter rada combinesvarious functions in this case, anultiple frequeng rada with polarimetric andvelocity
measurement capabiylit

Xi



RANGE PERFORMANCE OF MULTIFREQUENCY RADAR.

A statistical study of the range performance of tube-powered and solid-state radars was carried
out for 10-, 35-, and 95-GHz systems appropriate for a compact airborne sensor. Using statistics
of stratus clouds taken from published reports, it was shown that tube-powered 10- and 35-GHz
radars had a high probability of detecting supercooled clouds to ranges of 30 kilometers or more.
Range performance at 95 GHz is more strongly impacted by attenuation so that clouds with
drops in the range of 80-430 micrometers fall below the detection threshold 10 percent of the
time at 30-kilometers range. Therefore, a three-frequency inversion algorithm would be
configured to revert to a two-frequency algorithm in cases when the 95-GHz signal level fell
below the detection threshold.

TEMPERATURE PROFILING.

Two techniques were investigated for remote temperature profiling: multichannel radiometry in
the 50- to 60-GHz band and a technique known as Radar Acoustic Sounding System (RASS).
These techniques are currently in use for vertical temperature profiling from fixed ground sites.
Both techniques appear feasible over short ranges (a few km) but are severely limited at longer
ranges. Although horizontal profiling over long ranges may be technically impractical, Quadrant
Engineering Inc.’s investigation of the 50- to 60-GHz radiometer showed that vertical profiling
of temperature may be practical with a small airborne sensor. Such information would be
valuable to a pilot seeking warmer air either above or below flight level.

PRELIMINARY DESIGN OF A PROTOTYPE ICING POTENTIAL DETECTION RADAR.

The final section of this report considers the design of a prototype system for detecting cloud
parameters associated with aircraft icing. After conducting a statistical analysis of signal to
noise in stratus clouds, it was concluded that the proposed three-frequency radar should employ
high-powered tube sources (either magnetron or klystron) with peak power levels in excess of
1 kW. Solid-state sources were also considered but resulted in a loss of detection capability of a
factor of three to four in mean particle diameter.

SUMMARY OF FINDINGS.

In summary, Quadrant Engineering Inc. has shown that the complex problem of inverting cloud
parameters from range profiles of backscattered radar power is feasible with a radar operating at
two or more frequencies. Particle sizing was characterized by two parameters: measure of the
mean particle size and spread of the size distribution. Addition of a polarimetric capability can
reduce biases in size estimation in mixed phase clouds by identifying the presence of ice. The
addition of a lidar channel can provide a modest improvement in particle sizing in rain or drizzle
but is of little value in remote sensing through optically thick clouds. Horizontal temperature
profiling using radiometric techniques and RASS were also investigated. Although both
techniques appear viable over short ranges (a few kilometers), neither was found to be sufficient
for the longer ranges needed for icing avoidance.

Xii



1. INTRODUCTION.

This document presents the results of an imgason of remote sensj technobgies applicable
to aircraft icing. The long-termogl is to develop an aircraft-mounted sansepable of
detectng dangerous levels of supercooled liquid water tens of kilometers ahead of the aircraft.

Aircraft icing due to supercooled liquid in the atmosphean $gnificanty deteriorate
airworthiness andhas been cited for aa@nts in both militay and geeral aviation Ryerson,
1996]. Furthermore, icingofecasts have low resolution and are ofte&acarate, so acraft are
left to contend with icingr to abando flying altogether vaen an icng potential &ists. An on-
board remoteicing pdential detectionsystem would forewarn fligh crews of hazardous
environmental conditions dgrenaigh to allow apprpriate crewdecisions and actions. Once
the decision is made to avoid aelded ichg environment, air trafficontrol procedures must be
followed and an appropti flight path determined. hErefore, ay practical remote icg
potential detectiorsystem should be able to look ahead of the aircraftgaifscant distance
(about 20-30 kilometers, altbgh this value is not firy established).

A number of remote semgj techniquedave been invesgatedor suggestedadr icing detection
[Ryerson, 1997]. To remdie detect icng potential, ay instrument or combination of
instruments must have the capabilof detecting cloud liquid water ctent and partie size
parameters. In addition, the capabiyi of remotdy profiling temperature would also be
beneficial, although mboard terperature sensors ap be alequate to estimate tguerature
under some conditionsin this staly, Quadranthas investigeed a number of techraies to
detect partile size parameters, liquid water content, and temperature. These agemale as
follows:

a. Multiparameter radar usintwo or more frequencies and multiple polarizations to
estimate liquid water content and particle size parameters.

b. Lidar (light detection and ra@gmng) as an aid to multiparameter radar for particle sizing
and liquid water estimation.

C. Oxygen band radiomst to profile air temperature.

d. Radar Acoustic Soundingystem (RASS) to profile air temperature.

A brief review of each technody is given below.

1.1 MULTIPARAMETER RADAR.

Multiparameter radahnas the greatest potential fprobing cloud partite paraneters die to the
combination of moderate attenuation ande@uate scatterng cross section. A avking
hypothesis was formulated that cloparaneters could bextractedby measumg baclscatter at
a combination of attenuafinand nonattenuatinfrequences. Since scattegnis a complex
nonlinear function of particle size and freqagnit is impractical to consider aanalytical
solution to the inverse problem of computipgrticle size and liquid water contentsbd on
measured backscattered power at multiple fregesncQuadrant therefore faaal its efforts on
an appraimate numerical solution to the inversion, speeify, a neural network. The netvork



was trainedoy simulating thosands of test s of radascatterng from assumed patrticle size
distributions. The neural network issdabed in section 2.2, where results of one-, two-, and
three-fregiency agorithms are compared.

1.2 PQARIMETRIC LIDAR.

From the outset of our research, it was clear that lidar was not a viable staadeghniquedr

remote detection of particle size and liquid water content. This is because the optical attenuation
coefficient in clouds of small particles caxceed 100 dB/km. However, for drizzle size
particles (seeral humred microméers in diameter) the optical atterion coefficient is
moderate. Lidar can improve the accuna of the multiparameter radar inversiolg@ithm

simgy by adding an additional freqoey to the inversion. The advantage of addiidar for

drizzle sizing is marginal, howevernee it is oty applicable below cloud base.vérall, it is

difficult to make a strog case dr including lidar in an airbrne ichg avodancesystem, since

lidar cannot peetrate opticdy thick clouds.

1.3 TEMPERATURE PROEING TECHNIQUES.

To our knowlelge, there is no established techiglor literature on temperatupgofiling over
horizontal paths. Quadrant investigated two potential methods for remote temperaturegyprofili
oxygenband radiomet and RASS. The uniform xing of axygen in the atmosphere means
that brightness temperature measured nearxpgeo absorption bands centered at 60 and 118
GHz depends dy ontemperature, pressure, and water contémtestigations cared out dumg

this stug showed that horizontal rge profiles of temperature can be estimated if multiple
frequencies are sampled in thedb5to 60-GHz band. This technique is well established for
vertical measrement of terperature but has not been applied to horizontal temperature
profiling. In section 4.1 the capabilities and limitations otygen band radiomst are
summarized. A more detailedahysis is presented in ppndix A.

Another method for remote tbetion of temperature is the concept of ngsia novel
implementation of the RASS technique to measure the speed of the acoustic wavefront emitted
by the aircraft. Initial calculations showed that a modelhajgoweredradar could dect acoustic

scatter from Bgine noise at distances ira@ss of 10 km. However,t& anéysis demonstrated

that the radar crossection of theacoustic wavefront will decrease rapicsthe aircrat moves
forward from the locus of the acoustic wavefront. Shedculations, presented in section 4.2,
suggest that RASS is impractical for airbortganperature profilig. Other difficulties with log-
distance RASS include distortion of the acoustivefi@nt by turbulence, as well as action

by the mean wind field. Rerefore, thdechnique is also impractical for slower mayiaircratft,

such as helicopters.

2. MULTIPARAMETER RADAR.

Conventional weather radars, operatimgfween 2 and 10 GHz, sample a sing&ameter,
reflectivity, Z, which is the sith moment of the particle size distribution, giv®n

Z= %df mnf/m® (1)



where N, is the number of particles per cubic meted dnis the diameter of thé" particle in
millimeters. Doppler radars add an additional pair of parameters: the mean iamteafrthe
Z-weighted velocty spectrumof the partites. Verticdly pointed radar obseations of the
velocity spectrum hee been sed to characterize drop-size distribution from airborne [Gajjow
et al., 1998] and groukbased installations. dfF these measumgents, the relationship between
particle size and fall velotyi® can be used toxeact the drop-size distribution, provided some
means is available to remove vertical air motions. Fwizbntal observations, there is no
equivalent method forx¢racting particle size from the velogispectrum. Research weather
radars usally add an ortbgonal polarization channel that provides five additional parameters
related to particle shape and ice/watdkage. Some Imefit may be derived from adding
polarization, especibl in detectng pristine cystals or largedroplets, as described in section 2.3.

2.1 RADAR CONFGURATION.

Figure 1 shows the geonmgtof the multifrequency airboe radar. Ralar pulse volume is
determinedby range resolution AR, and antenn&-dB one-way beamwidth, delineateby the
dashed lines. Two beamwidths are shown in tlgigré, one dr a high-frequecy rada and one
for a low-frequercy radar. A sinte main reflector can serve two or more fragues
simultaneouly, as shown inifure 2. In this configuration, a single feedhorn suppurti
multiple frequencies and multiple polarization is used, regultm coaxial beams at all
frequencies with no increase inparture blockage [Sekédg and Mcintosh, 1995]. Fragercy
reuse of a common aperture isexgial for the present application where limited space will be
allotted for an airborne icg avoidance antenna. For each fregqyerradar sensitivy is
inversey proportional to beamwidth. Therefore, it isi@al to use the narrowest beamwidth
possible for each frequey (i.e., use as much of the availabléesuma area as possible) since
sensitivty is likely to be a ky performance issue. Althgh some error maresult from
unmatched beamwidths, effective beamwidths candomailized in postprocessingy spatial
averagng, as described in section 2.4.

wszroons 12000 i high-frequency beam

range

radar pulse volume

FIGURE 1. GEOMETRY FOR RBORNEMULTIFREQUENCY RADAR

2 Fall velocity is the vertical vebcity of a droplet in the ebsence of vertical winds.



f2
f3 F&% subreflector

FIGURE 2. USING A SINGLE MULTIPLE-FREQUENCY FEED HORN TO
GENERATE COLOCATED BEAMS AT SEVERAL FREQUENCIES
(Feed ports for three frequenciésf,, andfs, are shown.)

Two types of radars were considered for the present application: a high-power pulsed radar using
a klystron or magnetron tube as a power source and a low-power Fr@)at built with a
solid-state transmitter. These basic radar configurations are shown in figure 3. A pulsed radar
typically uses a single antenna for transmission and reception by using a t/r (transmit/receive)
network. FM-CW radars are usually built using a pair of antennas to minimize leakage of the
transmit signal into the receiver. For a pulsed radar, range resdiRisrequal toct /2 where

c is the speed of light ands the transmitted pulse length. For example, a range resolution of 2

km requires a pulse length of 13.38. For an FM-CW radarAR:Z—CB, whereB is the

bandwidth of the frequency-modulated transmit signal.

3 Frequency modulated continuous wave



pulsed radar
radome

transmitter —‘ antenna

receiver

transmitter
FM-CW
radar
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FIGURE 3. PULSED AND M-CW RADAR CONHGURATIONS

2.2 NEURA. NETWORKCLASSIFICATION OF PARTCLE PARAMETERS

Neural networks have recéptgained favor in solvig complex, nonlinear problems where it is
difficult to construct closed-form ahdic solutions [Chen, 1996]. Quadrant used the Stuttgart
Neural Network Simulator (SNNS), Version 4.1, rumnion a Silicon Graphics Workstation.
The following description of naral networks is ecerpted from the SNNS manuaed]l et al.,
1995]:

Connectionisnis a current focus of research in a tiemof disciplines, amw

them artificial intellgence (or more general computecience), ysics,
psychology, linguistics, biolog, and mettine. Connectionism represents a
special kind of information pressng: Connectionissystems consist of nmy
primitive cells (units) which are workng in parallel and are caoected via
directed links (links, comectiors). The main pocessing principleof these cells is

the distribution of activation patterns across the links similar to the basic
mechanism of the human brain, where infation processig is based on the
transferof activation from one group afeurons to others thugh synapses...

The hgh performance of the human brain in extregmsomplex cgnitive tasks

like visual and auditty pattern recgnition was alvays a great motivation for
modeling the brain. From this historic motivation, connectionist models are also
called neural nets However, mosturrentneural netwerk architectures do not try

to closeéy imitate their biolgical model, but rather can begeeded simfy as a
class of parallellgorithms.

In these models, knowledge is wally distributed thraghout the neral network
and is stored in the structucé the topolgy and weghts of the links. Neural
networks are organized by (automated) training methods, whicHygsaaplify



the development of specific applications. Classical logic in ordinary artificial
intelligence systems is replaced by vague conclusions and associative recall (exact
match vs. best match). This is a big advantage in all situations where no clear set
of logical rules can be given...

The inverse problem of extracting cloud parameters from the measured range profiles of
backscattered power is a good example of a problem without well defined rules for estimation.
The forward problem is straightforward: for a given drop-size distribution, reflectivity and
attenuation can easily be calculated using Mie scattering formulas. Also, cloud and precipitation
properties, such as liquid water content or rain rate, can be directly calculated from drop-size
distribution. Solving the inverse problem, that is, calculating cloud parameters from measured
reflectivity profiles, is very difficult due to the nonlinearity of the forward problem. Neural nets
are ideal for solving problems where the forward problem is well characterized but the inverse is
nonlinear and complicated.

The neural network was designed to extract cloud parameters using only measured power at
multiple radar frequencies as a function of rahgehe basic concept is shown in figure 4 for a
simulation using five range gates. From the range profiles of measured refle@jyithe
network estimates three cloud and precipitation properties, including liquid water comtent,
mean volume diameter (MVD) and mean Z diameter (MZD). MVD and MZD were used in
place of the more common ice sizing parameter of median volume diameter, since they are
readily defined in terms of ratios of moments of the drop-size distribution. Mean volume
diameter (particle diameter corresponding to the mean of the volume distribution) is defined as
the fourth moment divided by the third moment of the drop-size distribution

|
MVD=2 )
I

wherep(r) is the number of particles per cubic meter per meter drop radius.
MeanZ diameter (diameter corresponding to the mean of the distribution of the sixth power of

the drop size) is defined as the seventh moment divided by the sixth moment of the drop-size
distribution:

[
MVD=2 [ 3)
|

* A similar neural network-based algorithm, one that estimates snowfall amounts from radar reflectivity profiles, was recently
published in [Xiao, et al. 1998].
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When the size distribution is narrow, MVD and MZD are almost equal. MZD is considerably
larger than MVD for drop-size distributions with a wide range of particle sizes. We show below
that MVD is close to median volume diameter for the modified gamma distribution.

Radar reflectivity data is calculated from drop-size distributions in each range cell, using Mie
scattering for spherical particles by implementing an iterative procedure developed by
Deirmendjian [Deirmendjian, 1969] [Ulaby et al., 1981]. Reflectivity and attenuation are
calculated for each range cell at each operating frequency, then combined to obtain the radar
observed reflectivity for each cell. At each frequency, the measured refleqiity
corresponding to the N-th cell is calculated from radar reflectivity of the N-th cell, iGZg]B,

and one-way attenuation due to propagation, in(4g,according to

Z.n=2Zy —ANAR—N212AAR, 4)

whereA is the attenuation rate in dB/km corresponding toiceDur model uses five range cells

with AR = 2 km, so each set of training and test data contains five observed radar reflectivities at
each operating frequency. Random measurement errors are accounted for by adding noise of 1
dB standard deviation to each valueZgf.

The neural networks used in this analysis consisted of an input layer, two hidden layers, and an
output layer. Hidden layers consist of nodes that are not directly connected to input or output.
The number of inpufN; ) and output node@N,) is determined by the number of radar operating
frequenciegNs), number of range gaté€l;), and number of cloud parametéx) according to

N, =N, N, ()
and

N, =N, O(N

o p

. =2) (6)



Cloud and precipitation parameters of the first and last range cells are not estimated because the
multifrequency technique relies on the reflectivity gradient (related to attenuation), which
becomes less accurate if data from adjacent range gates are not available. The number of nodes
in the hidden layers increases with the number of input nodes, allowing the neural network to
implement a more complex algorithm as additional input data is available. Figure 5 shows the
neural network topology for a single input frequency. The top row of inputs is equal to the
measured reflectivity at five range gates. The bottom row corresponds to the estimated liquid
water content, MVD, and MZD at the three central range gates. The diameter of the nodes in
figure 5 indicates the strength of its output. These diameters change as a function of input,
depending on the weights of the interconnecting lines and the node transfer function. The node
connections were configured to implement a simple feed forward neural network, while standard
backpropagatichlearning was employed to train the neural network. It was found that the
largest neural network (three-frequency) could be accurately trained within a few hours on an
SGI workstation. The neural network was originally trained using the total root mean square
(rms) error between input and output data sets. However, this led the neural network to focus on
the largest particles. Subsequently, we trained the neural network to minimize the percentage
error, which gave more uniform results as a function of particle size and liquid water content.

hidden layer

hidden layer

133 QAL LE-rrg LE = 502 .64 M7 Qs L=

Mys MYDe MZIDs miyy MVD3 MEZDy mg MVDy MEZDy

FIGURE 5. NETWORK TOPOLOGY FOR SINGLE INPUT FREQUENCY
NEURAL NETWORK

® Standard backpropagation seeks to minimize the global error between network output vectors and training output vectors
[Rumelhart, et al. 1986].



2.2.1 Training and Test Data.

A flow chart of the simulation software is shown in figure 6. The bulk of the chart describes the
procedure used to generate training and test data.
presented below, turned out to be the most critical aspect of this analysis. These files contain a
large number of input/output data vector pairs, each of which represents a particular cloud or
precipitation case. The variety of cases, the relationships built between the various elements of
the input and output vectors, and the errors of the radar data must be realistic and must represent
nature to ensure that the results predict the performance capability of a real system. Unrealistic

training and test data will produce unrealistic results.
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Test data and training data sets were generated independently using the same statistical models.
Training data files contain a much larger number of cases (10,000 training compared to 200 test
cases), assuring coverage of the entire space of cloud and precipitation conditions. Another
reason for training the neural network with a very large data set is to avoid under-sampling the
input/output function and to prevent memorizafiowhich can lead to large errors when an
independent test data set is applied to the neural network. The test data files do not have to be
large, but they should sample the range of conditions a real system might encounter.

2.2.2 Drop-Size Distributions.

Cloud drop-size distributions are commonly modeled using the modified gamma distribution
[Deirmendjian, 1969]:

—br” 4

p(r)=ar’e™ m (7)

where a,a,band yare positive, real constants that can be used to parameterize drop-size

distribution. These constants are related to the number of particles per cubid\peted the
mode radiusr, (the particle radius corresponding to the peak of the drop-size distribution) by
the following formulas:

b= ¥ (8)
B
a= N,y 9)
r(g)
whererl () is the gamma function and
B = a_+1 O (10)
y

The cloud liquid water content is related\tpand particle radius, in meters, by

NV
m, =10° zﬂrf’

1=1

O (11)

Thus, drop-size distribution is completely specified by liquid water content, mode radius, and
shape parametecsandy.

® If the number of training points is small, the network can implement an error-free mapping of eachseit \wlues into the
proper output values.
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The Marshall-Palmer distribution was used for the rain and drizzle cases tested below:
p(d)= N,e™ (12)

whereNy = 8.0 x 16 for rain, No = 8.0 x 16 for drizzle, andd is the drop diameter in meters.
The parameten, is given by

b =4100R™°* (for rain) (13)
b =5700R™**" (for drizzle) (14)

whereR;, is the rain rate in mm/hr.

Mean volume diameter and mean Z diameter were calculated from drop-size distributions which,
together with liquid water content, served as output vector elements of the training and test data
sets. The difference between MVD and MZD is a measure of the spread in particle size
distribution. A narrow distribution of particles will exhibit nearly equal values of MVD and
MZD, while a broad distribution of particle sizes will have a larger value of MZD than MVD.
Figure 7 displays a typical gamma distributipg(d) (o = 1.0,y = 0.5), and associated volume
distribution,p,(d) = d®py(d), and reflectivity distributionp(d) = d°py(d). Also shown are MVD,

MzD, and median volume diameter (MeVD). For the range of gamma distributions used in the
simulations, the ratio MZD/MVD ranged from 1.27 (for narrow distribution) to 2.91 (for wide
distribution). The ratio MeVD/MVD varied from 0.78 to 0.99.

1.0000 :
> R, ]
£ i
@ 0.1000
g
R l
£'0.0100 } R AN
fo! Cpl i\ ]
3 ARSI
O 0.0010 F i\R
S Sal=
=5\
0.000 : - bo AL 5 ]
01 010 100 1000 100.00 1000.00

drop diameter in micrometers

FIGURE 7. TYPICAL PARTICLE DIAMETER DISTRIBUTIONp4(d), ASSOCIATED
VOLUME DISTRIBUTION, p\(d), AND REFLECTIVITY DISTRIBUTION, px(d)
(The dashed lines show MVD, MZD, and median volume diameter (MeVD)).

Extreme examples of cloud distributions are shown in figure 8 for the smallest and largest mode

radius. Extreme examples of drizzle and rain distributions are shown in figures 9 and 10 for both
smallest and largest rain rates.
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FIGURE 9. RANGE OF DISTRIBUTION SHAPES FOR DRIZZLE
(Solid line:R = 0.1 mm/hr; dotted lindx = 10 mm/hr)
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FIGURE 10. RANGE OF DISTRIBUTION SHAPES FOR RAIN
(Solid line: R. =5 mm/hr; dotted lingR = 15 mm/hr)

2.2.3 Inversion of Particle Parameters With Randomly Varying Conditions.

The first test of the inversion algorithm includes a random mixture of clouds and precipitation.
Conditions were varied randomly from range-cell to range-cell with no correlation between
adjacent cells. These rapidly changing, uncorrelated conditions from cell to cell make estimation
difficult because reflectivity gradients are not only a function of attenuation, but can quickly
change due to variations in drop size and number of drops contained in the range-cell. The test
and training data contained 75% cloud cases, 15% drizzle, and 10% rain.

Model parameters used for cloud, drizzle, and rain are tabulated below. Unless noted,
parameters are uniformly distributed over the given range. Temperature fluctuations were
included (from —15 to +&) since the index of refraction of water is temperature dependent.
The algorithm uses temperature in computing the index of refraction of water, which affects
scattering efficiency and attenuation.

. Cloud model (based on gamma distribution) (75% of all cases):

Mode Radius: 0.1 to 20m

Shape Parameter 1 to 4

Shape Parametgr 0.51t0 1.5

Liquid Water Contentn,: 0.05 to 1.5 gn®

. Drizzle (Marshall-Palmer distribution) (15% of all cases):
Rain RateR: 0.1 to 10 mm/hr
. Rain (Marshall-Palmer distribution) (10% of all cases):

Rain RateR:: 5 to 15 mm/hr
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Three neural networks were trained and tested with simulated data. Figure 11 shows the liquid
water content and MVD versus reflectivity distribution of the training and test data sets,
including a mixture of clouds, rain, and drizzle. The highly clustered tail at the upper end of the
dBZ versus MVD plot (see the left-hand plots in figure 11) corresponds to the rain and drizzle
cases only. Clustering in the rain and drizzle cases is due to the fact that there is a one-to-one
correspondence between reflectivity and mean volume diameter for the Marshall-Palmer
distribution. Clustering due to the Marshall-Palmer distribution can also be seen in the plots of
dBZ versus liquid water content (see the right-hand plots in figure 11).

Training Data Size Distribution Training Data Size Distribution

i _ _ED;_
-8 L= 1 1 1 N A0t
1 10 100 1000 10000 0.0017 0010 Sood 1000 15000

Mean Volume Diameter (um) Liquid Water Content (g/m®)

Test Data Size Distribution Test Data Size Distribution

dBZ

—fn
1 10 100 1000 1 00S0 0.0 010 1.00 10.04

Mean Volume Diameter (um) Liquid Water Content (g/m®)

FIGURE 11. SCATTER PLOT OF dBZ VERSUS MVD AND LIQUID WATER
CONTENT FOR THE TRAINING DATA SET AND TEST DATA SET
(Drizzle and rain (25% of cases) were generated using the Marshall-Palmer
distribution; Clouds (75% of cases) are gamma distributed.)

The neural networks included one trained for X-band only (10 GHz); one for X-band and Ka-
band (10 and 35 GHz); and one trained for X-band, Ka-band, and W-band (10, 35, and 95 GHz).
The effectiveness of these algorithms was evaluated by generating scatter plots of the true value
of various parameters for the test data set versus the neural network estimates of these
parameters.
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Results for the case of mixed precipitation and clouds is presented in figure 12. Root mean
square (rms) errors are tabulated along with scatter plots of estimated versus input values of
liquid water content, MVD, and MZD. Liquid water content errors were reported using an
absolute scale, since the effect of liquid water on aircraft icing is linearly related to liquid water
content. A percent scale was used to display MVD and MZD errors, emphasizing that sizing
accuracy was almost constant over a wide range of input sizes. Using an absolute scale for
particle size errors is misleading, since the absolute error is dominated by small percentage errors
in the largest particles.

The results presented in figure 12 show that estimation accuracy improves substantially for
liquid water content as more operating frequencies are used. On the other hand, sizing is fairly
robust, even using a single 10 GHz radar. This is because reflectivity is most strongly dependent
on particle size (MZD) and only secondarily on liquid water content, Zns@roportional tal®

while my is proportional ta®.

2.2.4 Simulation of Stratus Layer.

To simulate flight through a stratus layer, the neural network was also trained with a model that
only contained clouds. In order to simulate a slowly varying cloud deck, adjacent range cells
were correlated with two different correlation factors. The range of cloud parameters used for
the stratus simulation are (Stratus Clouds 100% of all cases):

Mode Radius: 0.1 to 20m

Shape Parameter. 1to 4

Shape Parametgr 0.51t0 1.5

Liquid Water Contenin,: 0.01 to 1.5 gn™
Temperature: -15 to 6.

For the previous simulation, liquid water content was uniformly distributed between 0.05 to
1.5 g, This resulted in a low probability of generating clouds with low liquid water content
(only 3.3 percent of the cases were less than ®T)g For stratus clouds, liquid water content
was distributed log-uniformly between 0.05 and 16§ emphasizing cases with smaller liquid
water content

m, = 0.5x10™ 4 (m) (15)
where U[0-1] is a uniformly distributed random variable on the interval [0,1]. In this way, the

probability of simulating clouds with liquid water content below Omh{was increased from
3.3 percent to 20 percent of all cases.

15
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FIGURE 12. SCATTER PLOTS OF ESTIMATED VERSUS INPUT LIQUID WATER
CONTENT, MVD, AND MZD FOR TOTALLY RANDOM PROFILE OF CLOUD AND
PRECIPITATION CONDITIONS USING ONE FREQUENCY, TWO
FREQUENCIES, AND THREE FREQUENCIES
(Drizzle and rain (25% of cases) were generated using the Marshall-Palmer

distribution; clouds (75% of cases) are gamma distributed.)
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FIGURE12. SCATTER PLOTS OF ESTIMATED VERSUS INPUT LIQUID WATER
CONTENT, MVD, AND MZD FOR TOTALLY RANDOM PROFILE OF CLOUD
AND PRECIPITATION CONDITIONS USING ONE FREQUENCY, TWO
FREQUENCIES, AND THREE FREQUENCIES (Continued)

Mode radius, shape parameters, liquid water content, and temperature were correlated from
range gate to range gate within a particular case, but each case (10000 for training and 200 for
testing) was independent from the rest. This correlation was generated by the following mixing
formula (shown fom,)

m,(i +1)=m,()0C+m, O1-C) (16)

where m, is a randomly generated value within the allowable rangeCaisdthe correlation
factor. Two test cases f@ = 0.9 and 0.7 are presented below.

Data from stratus simulations are presented in figures 13 and 14. These cases show improved
ability to detect liquid water content using two and three frequencies as compared to the totally
random case.

2.2.5 Modified Gamma Distribution Used to Represent All Clouds, Rain, and Drizzle.

The Marshall-Palmer drop-size distribution used in the rain simulations described above results
in a fixed relationship betweehandR;

Z = 200R*® (17)
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(All data were generated using the modified gamma distribution.)
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FIGURE 13. SCATTER PLOTS OF ESTIMATED VERSUS INPUT LIQUID WATER
CONTENT, MVD, AND MZD FOR STRATUS LAYER WITH 90 PERCENT
PROFILE-TO-PROFILE OVERLAP OF CLOUD CONDITIONS USING ONE

FREQUENCY, TWO FREQUENCIES, AND THREE FREQUENCIES (Continued)

referred to as the Marshall-Palmer formula [Doviak and Zrnic, 1993]. When the neural network
is trained with a Marshall-Palmer distribution for rain, measuremenfsmoéde at X-band (a
nearly nonattenuating wavelength) are equivalent to nearly exact measurements of fain rate
Once the rain rate is known, the entire particle size distribution is determined through
equations 12 and 13. Therefore, odcis measured at X-band, all cloud properties are pinned
down deterministically. To avoid this problem, the modified gamma distribution was used to
model precipitation. The modified gamma distribution has no fixed relationship befgeh

particle size distribution, making it more difficult for the algorithm to invert particle parameters
from radar measurements. The following range of parameters was used to model clouds, drizzle,
and rain. Modified gamma distribution model for clouds, drizzle, and rain:

Mode Radius: 0.5 to 160m

Shape Parameter. 0.1to 4.1

Shape Parametgr 0.5to0 2.0

Liquid Water Contentn,: 0.001 to 1.5 gn'®
Temperature: -15 to *%&.

" Errors still arise in the inversion due to added noise in the X-band test data.
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ONE FREQUENCY, TWO FREQUENCIES, AND THREE FREQUENCIES

(All data were generated using the modified gamma distribution.)
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FIGURE 14. SCATTER PLOTS OF ESTIMATED VERSUS INPUT LIQUID WATER
CONTENT, MVD, AND MZD FOR STRATUS LAYER WITH 75 PERCENT
PROFILE-TO-PROFILE OVERLAP OF CLOUD CONDITIONS USING ONE

FREQUENCY, TWO FREQUENCIES, AND THREE FREQUENCIES (Continued)
To avoid assigning high liquid water contents to distributions containing very large droplets, the
liquid water content was coupled to the mode radius using the following distribution function:
ulo-1)3.176-1.3) |
m, =0.001x10 E gn (18)

The mode radius was also distributed using a log-uniform distribution to give a higher
probability of small droplets:

r, = .5x10°10** Y (m), (19)

2.2.6 _Summary of Multifrequency Inversion Study.

Figure 15 plots liquid water content, MVD, and MZD inversions using one-, two-, and three-
frequency neural networks for the cloud, drizzle, and rain case with modified gamma distributed
particle sizes. Like the second stratus case presented above, the correlation between gates was
75 percent. Note that the average error in liquid water content is greatly reduced for the single-
frequency case. This is an artifact of the training process, where liquid water content was
intentionally biased towards smaller values than in the previous test cases.
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Table 1 summarizes errors in liquid water content, MVD, lsiitD for one-,two-, and three-
frequency estimatesdr the case of random cloud variation, the two stradyericaes, and the
simulation based sdieon the modified gamma distribution. These results suggest that a two- or
three-fregiency radarsystem can besed to etract particle size and liquid water content from
measuredralues of backscattered power. For alirftest caes, the three-frequey inversion
errors are smaller than the two-fueqcy inversionby as much as 10fercent, althoughhte
improvement is not as dramaticlatween e one- and two-frequency ses.

Following the prgram review at CRRE, the neural network was retrained sepéayater each
individual parameter. Traing each parameter sepafgtanade a small improvement in
performance for MVD andMZD and no impreement for liquid water content. Theural
network was also trained toteact medianvolume dianeter. The error reportedor median
volume diameter was within 1 percesftthe error reportedof mean volume idmeter, vinen
tested on a three-frequaninversion.

2.3 PQARIMETRIC RADAR.

For the mosgeneral case ddcatterirg from natural surfaces, a polarimetric radan report as
many as nine indepatent parameters to reant the averagscatterng behavior of a collection
of particles [Hiynen, 1970]. Forscatterers hawg azimuthal symmety, the number of
independent parameters is reduced to.fivor a linealy polarized rdar, these parameters
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include reflectivity at vertical polarizatio,,; differential reflectivity,Zg,; linear depolarization
ratio, LDR; and magnitude and phase of the copolarized correlation coeffipigjaind [ oy,.

TABLE 1. SUMMARY OF ESTIMATION ERRORS FOR ONE-, TWO-, AND THREE-
FREQUENCY RADAR ESTIMATES OF LIQUID WATER CONTENT, MVD, AND MZD

Liquid Water Content Error,
Frequenc
Test Case 10 GHz | 35 GHz| 95 GH7
Randomly varying clouds and rain 0.39 0.26 0.1y
Stratus, 75% correlation 0.57 0.1 0.08
Stratus, 90% correlation 0.47 0.06) 0.03
Modified gamma distribution, 75% correlation 0.058 0.04 0.0p
MVD Error, %
Frequenc
Test Case 10GHz | 35 GHz| 95 GHz
Randomly varying clouds and rain 25.] 21.% 15.9
Stratus, 75% correlation 33.5 18.8 15.9
Stratus, 90% correlation 35.8 16.8 12.(
Modified gamma distribution, 75% correlation 46.4 31.3 28.b
MZD Error, %
Frequenc
Test Case 10 GHz | 35 GHz| 95 GHZ7
Randomly varying clouds and rain 25.1 20.1 15.¥
Stratus, 75% correlation 34.0 18.8 16.8
Stratus, 90% correlation 36.3 18.6 13.3
Modified gamma distribution, 75% correlation 45.3 32.0 28.4

Similar parameters are available for a circularly polarized radar and have been shown to contain
equivalent information [Jameson, 1987]. The parameters can be reported at one or more
frequencies, thus, aN; frequency polarimetric radar can report as many Ns @larimetric
parameters. In practice, many of these parameters are correlated or partially correlated to one
another, reducing the effective number of independent polarimetric parameters b&low 5
Conditions where the number of polarimetric parameters is less than five include

a. Clouds with particles that are isotropic in the polarization plane. For this case, the
number of independent scattering parameters is reduced from five to two. These two
includeZ,, andZ,.

b. Clouds with particles that are nearly spherical and dominated by single scattering. In this
case,LDR = 0 and Z, = Z;, so the number of independent scattering parameters is
reduced from five to one.

Thus, a polarimetric radar adds no additional detection capability as compared to a conventional

weather radar when observing nonprecipitating clouds that only contain supercooled liquid water
droplets. The primary advantage of a polarimetric radar is in detecting particles with a nonzero
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axial ratio. Common particle shapes that can be detected over a horizontal or near horizontal
path using polarimetric radar are listed below along with the applicable polarimetric quantities:

. Precipitation sized liquid dropletZ4, [1pon )

. Pristine ice crystals, such as plates or needles with preferred orien#¢iobhQdR, or
Prv.)
. Tumbling ice crystals without preferred alignmerDR, |th|)-

. Hail (Zg, LDR,0Or pny).

. Water coated aggregates or rimed particles, especially in the melting lb2Rdo¢
|-

Aggregates and rimed ice particles in the frozen state exhibit a small amount of depolarization
(LDR values of -15 dB or less) and are usually difficult to detect on the basis of polarization
alone.

Two other factors reduce the number of useful polarimetric parameters. First, polarimetric terms
such asLDR and Zy are not strongly frequency dependent. For this reason, a practical
multifrequency radar would most likely employ a single X-band polarimetric channel. Second,
LDR measurements, exhibiting usable values 5 to 25 dB below the copolarized return, are not
practical for a system that must operate at long ranges. PrddiiBameasurements require

high signal-to-noise ratios that can only be expected within a few kilometers of the aircraft. The
only polarimetric parameters that are practical for long range measuremeitg angl p,,
parameters that only depend on copolarized measurements.

Z4r and pr, measurements could aid the neural network inversion by identifying the presence of
ice in mixed phase clouds. Ice biases reflectivity measurements without adding appreciably to
attenuation. This bias appears as a change in drop size, which causes errors in the inversion of
liquid water and size parameters. It is important to point out that regions exhibiting high levels
of Zy4 are not all that common in nonprecipitating clouds other than cirrus. Such clouds must
include pristine crystals in the absence of aggregates or other large particles that will dominate
the backscattered power. A mixed-phase cloud containing aggregates would not be detectable by
a polarimetric radar.

In summary, multiparameter radar can provide as manyNasntlependent parameters (five
polarimetric and two Doppler parameters per frequency). However, for the present application,
where anN; frequency radar would likely include no Doppler capability and only a single
polarimetric channel, the total number of parameters is reduced k. 4#n addition, for the

case of liquid clouds containing small, nonprecipitation sized particles, the polarimetric channel
adds no information, in which case the number of parameters is redudgdh®e backscattered
power sampled at each frequency.
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For research purpes, it is recommended that the X-band radar include a polagrakémnel to
improve particle sizig of large dropets and identy pristine ice cystals when tey occur.
Adding a sirgle-frequeng pdarimetric capabity means addig an additional polarization port
to the antenna feed and requires that the antenna be more Igacehnstructed to reduce
coupling between ortigonal polarizations. A polarimetrichannel also requires s@madditional
switching circuitry for polarization gility and additional lgorithm complication for calibration.
Adding a sirgle-frequeng pdarimetric channel to the radar will add approxirhate percent to
the total cost of the pratype system.

2.4 SCANNNG STRATEGY.

For optimal sensitity, a multifrequeny rada will generde antennapatterrs with differing
beamwidths. Therefore, ahyagiven instant, the low-fregncy radar samples a mudhrger
volume than the higer frequacy systems. The scanning strgyedescribed bebw canbe used

to mitigate this problem.In addition, ay radar system sampltig a distributed scatterer must
average may pulses to convee to a usable estimate of the mean scattered power. The number
of averagesxpected as a fiction of scan rate, manum range, and size of thscan sector is
derived below and is used subseqletd estimateignal-to-noise ratio.

A cross section ofhe scan volume is shown ingtire 16 where 3-dB contouof the antena
beams are dispjad for a three-frequrey radar. he beam radii are drawn in a ratio of 1:3:9
and represent the X-band, Ka-band, and W-band 3-dBrantgain contourslf sensitivity were
not an issue, the antennbeamwidths would be deged to be the saen at all
frequencies-assumg that sample volumes are frtency independent. However, for gystem
designed tadetect cloudparameers at lmg ranges, the amnna pattern should be dgsed to
maximize signal-to-noise ratio. Since thackscatteredgwer scales inverdg with beamwidth,

it is important to transmit the narrowest possible beamwidth to achieve optgmal-t&i-noise
ratio.

low-frequency footprint

\ = -
)

high-frequency footprint

scan region

FIGURE 16. SECTOR SCANWITH THREE-FREQUENCY RADAR
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One method to reduce the effect of nonequal beamwidths is to average the higher-frequency
beams as shown in figure 17 (the Ka-band footprint is eliminated for clarity). Within the scan
volume (spanningb,, in azimuth anddg in elevation), data is averaged into cells, outlined in
black in figure 17, representing 50 percent beam overlap in azimuth and elevation for the lowest
frequency beam. This provides adequate averaging of the low-frequency beam to generate stable
sample statistics. The volume sampled by the lowest-frequency beam (blue) is replicated at the
higher frequency by averaging the high-frequency beams (red). Amplitude weights are applied
to the higher-frequency beams to replicate the amplitude variation across the lowest-frequency
beam.
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FIGURE 17. BEAM AVERAGING TO ACHIEVE COMMON SAMPLE VOLUME

Referring to figure 16, the total sample volume, expressed in steradians, is equal to the product
@, P With 50 percent beam overlap, the total number of cells in the scan volume can be

approximated by taking the ratio of the total cross-sectional area of the scan volume divided by
the cell cross-sectional area

(OJO)
— az " el (20)

Neets = 3. g
U

wheref is the 3-dB one-way beamwidth of the X-band antenna (note that the cell cross section

O
N

is approximated by a square of wid%lgl in equation 20.



The number of pulses averaged within the &&lle is given by the total number of pulses in the
entire scan volume divided by the number of cells. The total number of pulses in the scan
volume,Npuise IS given by

Npulse =prs (2 1)

wheref, is the radar pulse repetition frequency dids the time required to scan the entire
volume. ThusNaeis given by

N 9f T.B?
Nave — pulse — p sBx (22)
N 40 P,

cells

Noting that the maximum allowable pulse repetition frequency is eqUEP®y,.x WhereRyaxis
the maximum range, the maximum value Ny.is given by

2
ave — & (23)
8Rmax¢)az¢)el
which shows that the number of averages is governed by the beamwidth of the widest or lowest
frequency beamN,e is plotted in figure 18 for three scan periods of 3.3, 10, and 33 seconds to
sweep the entire scan volume. Equation 23 is used in section 2.5 when estimating signal-to-
noise ratio.
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FIGURE 18. NUMBER OF AVERAGES VERSUS MAXIMUM RANGE WITH
UPDATE RATE AS A PARAMETER
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2.5 SIGNAL-TO-NOISE ANALYSIS.

The sensitiiiy of a meteorolgical radar is expressed in terms of the minimum detectable
volume backscatterg coefficient,min:

2p2
1024In(2)r*R?P, ., (24)

- -2L,
P10 4OGZA2ﬁ2cr1/Nave

min

where R is the rage in meters to the center of the volume cetlarnobservationPymi, is the
minimum detectable gnal level in WattsP; is the peak power of the transmitter in Waligis
the atmospheric loss in dB/m due to liquid wated water vapoiG is thegain of the antenna,
is the free-space wavelength in metfss the beamwidth of the antenna in radians, @2l is
the lergth in meters of the raye cell in the direction of progation.

n is related to reflectity through

7.[5

n :10‘18A—4|K|ZZ. (25)

whereK is proportional to the complex index of refractian,

K= . (26)

Substitution ofZ for n is oy valid when ke scatterers fall within the Ri@igh region, that is,
when the maimum drop diameter is less than appnoatdy one tenth of a wavelegth, a
criteria whch is valid below 100 GHz for most nonprecipitating clouds. Convertingtieq 24
to 10 lgg(Z2) = dBZ yields

dBZ,, =1936+ 20logR - 20log|K|+20logA + P, .. (dBm)

— P(dBm)+ 2L, - 5log(N,,.)- 2G(dB)- 20log B —10log(cT) 27)

For the present problem, it is useful tdate reflectiviy to particle diamier for aparticular
liquid water content. Assuming a monodisperse (constant particle size) particle size distribution,
reflectivity is given by

_ 6x10%2m,d?
T

Z (28)

where d is theparticle diaméer. Equation 28 is plotted in fige 19 and is used in generating
figure 21.
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FIGURE 19. CLOUD REFLECTIVITY IN dBZ AS A FUNCTION OF LIQUID WATER
CONTENT WITH PARTICLE SIZE AS A PARAMETER

The atmospheric loss term,, in equation 27 is equal to the sum of extinction due to small
droplets and loss due to water vapor and oxygen absorption. Absorption by water vapor was
computed using formulas found in Ulaby et al. 1981. Loss values computed for the saturation
vapor pressure at 800 mb (2-km altitude in standard atmosphere) are tabulated in table 2.

TABLE 2. ABSORPTION DUE TO WATER VAPOR FOR SATURATION
CONDITIONS AT 800 mb

Frequency
Temperature 10 GHz 35 GHz 95 GHz
0°C 0.0051 dB/km| 0.0465 dB/kn 0.297 dB/km
-15°C 0.0018 0.0169 0.109

Extinction due to liquid watek,, is given by Ulaby et al. 1981,

_.082m, Im(-K)
Ky = 5 B, (29)

wherelm(-K) is the imaginary part of -K. The factn(-K)/A is proportional td > wheref is

the frequency throughout the microwave region; therefore, loss due to liquid water scales linearly
with m, and scales roughly as the square of the frequency. Figure 2 péstsa function of
frequency for various water contents.
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FIGURE 20. ATMOSPHERIC EXTINCTION DUE TO SCATTERING AND
ABSORPTION BY LIQUID WATER AT 0C

2.5.1 Minimum Detectable Particle Size.

Equations 27 and 28 were combined to solve for the minimum detectable particle diameter as a
function of range for the pulsed, high-power radar parameters shown in table 3. These results are
displayed for 10, 35, and 95 GHz in figure 21 (assumptions: monodisperse particle size
distribution, Rayleigh scattering, and uniform cloud layer). Cloud liquid water content was
varied between 0.01 and 1.8, which strongly affects the depth of penetration for the 35- and
95-GHz radars. The dominance of the atmospheric loss term in equation 24 causes the range
performance to degrade for higher liquid water contents, even thbugireases linearly with

m,. The curves for the highest liquid water content should be viewed as worst case, i.e., they

assume the average liquid water content is BB'g

TABLE 3. PARAMETERS FOR A HIGH-POWERED, TUBE-PULSED RADAR USED IN
ESTIMATING RANGE PERFORMANCE OF MULTIFREQUENCY RADAR

Radar Frequencies
Parameter| 10 GHz 35 GHz 95 GHz
P;, dBm 70 62 62
G,dB 26 37 a7
Prmin, dBm -124 -123 -122
B, radians 0.122 0.034 0.013
A, m 0.03 0.0086 0.00316
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2.5.2 Statistical Analysis of Range Performance.

Range performance can also be simulated by assuming varying cloud water content, following
the statistics presented by Cooper et al. 1982. They report that 1 km averaged data exceeded
0.1 g5 percent of the time and exceeded G tpnly 1 percent of the time. Over a 10-km
path,m, exceeded 0.5 only 0.5 percent of the time. These statistics can be used to generate
more representative plots of range performance at all three frequencies.

To simplify generation of liquid water statistics, cloud cells of 3 km length were generated where
95 percent of the clouds were uniformly distributed between 0.0 andii®® 443 percent of the
clouds had liquid water contents between 0.1 and @f,gand 0.7 percent had liquid water
content exceeding 0.5@5°. Using 3-km cells balances Cooper et al.’s statistical requirements
for 1 and 10 km averaging lengths. The cumulative distribution function (CDF) for this example
is shown in figure 22. In addition to varying the liquid water content, the temperature was varied
randomly, as shown in figure 23.
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Typical range profiles of temperature and liquid water content are shown in figure 24 for the radar
parameters of table 3. Simulations of minimum detectable reflectivity are displayed for 10, 35, and
95 GHz in figure 25 and include the effect of water vapor absorption at zero degrees centigrade,
assuming 100 percent relative humidity. One hundred different range profiles of randomly varying
clouds were simulated in generating figure 25. The spread in the data represents the statistical
distribution of the total attenuation between the radar and the range corresponding to the data point.
This figure, along with figure 19, can be used to estimate the probability of detecting a patrticle of a
given size versus range.
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FIGURE 24. TYPICAL RANGE PROFILES OF LIQUID WATER AND TEMPERATURE

2.5.3 Sensitivity of Solid-State Radar.

A similar statistical analysis was carried out for three solid-state cloud radars, as shown in
figure 26, using the FM-CW radar parameters given in table 4. The beamwidth assumes separate
0.2-m-diameter antennas. These data show between 15 and 20 dB less sensitivity for the solid-state
systems as compared to the pulsed systems. This means that the minimum detectable particle size
for the solid-state radar is between three and four times larger than for the tube-powered systems.

TABLE 4. PARAMETERS USED IN ESTIMATING RANGE PERFORMANCE OF
SOLID-STATE FM-CW MULTIFREQUENCY RADAR

Radar Frequencies
Parameter| 10 GHz 35 GHz 95 GHz
P, dBm 40 33 27
G,dB 24 35 44
Prmin, dBM -136 -135 -134
B, radians 0.118 0.05 0.02
A, m 0.03 0.0086 0.0032
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3. LIDAR.

Published studies have shown that a multiple-fieldiefsidar operatig at 10.6um can extract
liquid water content ang@article size distribution at shortnges [Hutt et al., 1994]. Optical
attenuation due to scattegifrom small droplets is the primafactor limiting the utility of lidar

for long-range partie sizirg. The optical limit extinction coefficient is plotted as a function of
drop diameter inigure 27 with liquid water cdant as a parameter. THashed line indicates a
loss of 1 dB/km, which cannbk excealed if a p@etration depth of 30 km is requiredhellidar

will only be effective for icig potential déection for particles fallig within the shadedirea
shown in this figure (i.e., the region of low attenuation with liquid water content above 0.05
gm®). This shows that the lidar will bnbe effective in supercooled liquid with particlesyiar

than 500 micrometelrsprimariy drizzle or rain.

One scenario that ght benefit from lidar is drizzle or mixed phase ice and drizzle below cloud
base. Hure 28 plots liquid water content as a function of rain rate assuming a Marshall-Palmer
drop-size distribution for drizzle and rain (the curves for drizzle and rain sentiedy
identical). Taken togetheliglres 28 and 27 inditaithat for drizzle rates of 1. mm/hr or less the
liquid water content is small eagh to allow optical propagation with low attenuation. Neural
network simulations of a lidar with three-frequgrradar confirmed an improvement in sizing
drizzle sized particles as seenigure 29. However, no sizing imp@ment was found for the

bulk of the supercooled g region.

12

extinction coefficient in dB per km

10 100 1000
Drop diameter in micrometers

FIGURE 27. OPTCAL EXTINCTION COEFRCIENT FOR LUQUID WATER
CONTENTS BETWEEN 0.001 AND 1 GRAM/CUB METER
(Assumptions: optical limit (particle much larger thare evarelength); monodisperse
drop-size distribution. Shadjrhighlights region that nay benefit from lidar.)
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FIGURE 28. LIQUID WATER CONTENT VERSUS RAIN RATE
(Liquid water content is less than 0.0Bgfor rain rates below 1 mm/hr.)

Another potential advantage of lidar is its ability to detect ice. The polarization lidar technique
has been used in cloud research since the 1970s [Sassen, 1991]. Polarization lidar uses a single
transmit polarization and a dual-polarized receiver to measure linear depolarization ratio, termed
din the lidar literature. Since ice depolarization is usually quite stidrsgnormally expressed

in linear, as opposed to logarithmic, units. Sassen presents a useful figure, displaying a linear
depolarization ratio for various ice habits and water droplets, derived from laboratory and field
studies. In the absence of multiple scattering, there is a clear separation between scattering from
water droplet cloudsdless than 0.15) and various frozen hydrometedis the range of 0.4 to

0.7.)

Depolarization due to multiple scattering in water clouds can be largedwélues in excess of

0.5 reported for penetration depths of less than 200 meters [Pal and Carswell, 1973].
Depolarization is much less a problem in drizzle, since droplet concentration is greatly reduced.
According to Sassen, drizzle causes very little depolarization since the particles are “small
enough to stay spherical and the concentrations are usually small enough to significantly negate
multiple scatter” [Sassen, 1998]. Multiple scatter can also be greatly reduced by using a narrow
field-of-view lidar. According to Sassen, “very narrow lidar beamwidths can seriously restrict
the viewing of multiple scatter and cause only small depolarization incréaggs spectral
resolution lidars, for example, hardly see more than a few percent linear depolarization ratio
(LDR) increases in dense water clouds” [Sassen, 1998]. These facts suggest that a lidar can
detect the presence of ice over many kilometers and could be an aid to detecting mixtures of ice
and drizzle. However, the minor advantage gained by being able to detect precipitating ice or
mixtures of ice and drizzle does not provide strong motivation for including a lidar in a practical
in-flight system.
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NETWORK PLUS LIDAR (BOTTOM)
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4. TEMPERATURE PROIEING.

Idealy, an arborne icirg avoidance ystem will include an instrument capable of remote
temperature measurements. Evernugfiohorizontal temperature gradients are ugusahall over
short distances, a few degrees increase in temperature can provideap® window out of
dangerous icig conditions. Two method®if temperature filing were considered: xygen
band radiomey and RASS. These are described separatehe followng sections.

4.1 OXYGEN BAND RAODOMETRY.

Dr. Goodbelet of Quarant Engineerng Inc. prepared a report on radiometnprofiling of
temperature, which is attaed as apendix A to this report. The findingsf appendix A are
summarized below:

a. Horizontal temperature profilgn using a 50- to 60-GHz radiometer will work with
accuray similar to vertical profilng radiometers (3 K, rms) whe range resolution is
scaled linedy (1:1) with range. For example, at a mge of 20 km, the reported
temperature will repsent an average of the atmospheric temperature between 10 and
20 km with an accucy of 2-3 K.

b. Some amiliary method must be used to correct for liquidtevaand watervapor
fluctuations. For example, the estimate of liquid watertemtnmadeby the neural
network agorithm could be used to correct the radiomdéda.

This stdy has demonsttaed that a radiometer can proftemperatire over a horizontal path.
However, implementation problems suggest that the techmpyenot be practical. Tise
problems include:

. Correctng for liquid water at nages leyond he detection capabiyi of the radar.
. Accounting for loss due to water and ice on the radosae §ection 5 and pendix B).

Correctng for contamination from ground emissions is another significant problemugttho
this can be rasted to maageabldevelsby using a narrow beam.

A temperature profiig radiomeer could be added to th@oposed radadesigndescrbed in
section 6 for about 10 percent of the total cost of the fymdosystem. Howeer, the
instrument’s coarse rga resolution and susceptilylito errors ague ajainst the added expense
of a radiomeiic chamel for horizontal temperature pfiling.

The results of theralysis presented in appendix A suggest that a low-cost radiometerbsould
developeddr upward and downward loatg temperature pfiling. Placing seeral radiometer
channels between 55 and 60 GHz can allowrdvard lookng profiling without serious ground
contamination, which is more of @oblem at lower frequemes (below 55 GHz). Such an
instrument mg provide valuable information if a pilot needs to escape aig iwimdition and
can detect warm air above or below the aircraft.
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4.2 TEMPERATURE PROEING USING RASS.

RASS operates using theinciple of Bragg interaction between an acoustic wavefront and an
electromagetic sigal, as shown inigure 30 [Frakel and Peterson, 1976]. Bragg resonance
occurs vhen Ae = 2\, where A is the electromgneic wavelegth and A, is the acoustic
wavelength. Thescatterng efficiency of an acoustic wavefront ofwavelengths increaes & n’

due to the coherent summation of the Isaaktered electric field from each wacrest. The
speed of sound/, is relded to the absolute temperatufepy the following formula, assumg

still air:

V, = 20.05\T (30)

scattered RF is retrofocused to antenna

when acoustic and RF sources are colocated

F—\_\

/ﬁ\ Bragg Interaction
between RF and
acoustic pressure

o E

acoustic
source

vRF

source

FIGURE 30. RADAR ACOUSIC SOUNDONG SYSTEM CONCEPT

The airbone RASS concept is shown iingéire 31. Acoustic power emittdny the engines
(equivalent to a 0.1 to 1 kW isotropic source in tbeward direction) creates an acoustic
wavefront travehg at the peed of soundc. The arcraft traveling at v lags behind this
wavefront at a distancg-v);. The acoustic waefront andRF wavefront interact cberenty
over a small section of the spherical wavefront, where lthsepdifference between the RF and

acoustic wavefronts is less thaid.
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FIGURE 31. AIRBORNE RASS CONCEPT

The effective beamwidth over which the phase error is small can be computed using the
following formula, where the geometry is shown in figure 32.

£ = 2k_[(c -V}, (sed -1)-ct, (sed —1)sedp-06)] (31)

where € is the RF phase difference between acoustic and RF wavefiants the
electromagnetic wavenumber, afddndgare related by

6 =sin E:;SIWE (32)

(t -'\")t 1 i

RF wavefrunt

t=0
Acoustic wavefront
|

FIGURE 32. AIRBORNE RASS GEOMETRY

Phase error as a function 8fis plotted in figure 33 for the conditions given in table 5. This
shows that a two degree sector of the acoustic wavefront will maintain phase coherence with the
RF wavefront, assuming ideal acoustic propagation. This wavefront can be significantly
disturbed by horizontal winds and turbulence.
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TABLE 5. CONDITIONS FOR EVALUATING EQUATION 31

Parameter Value
Speed of sound; 340 m/s
Aircraft velocity,v 100 m/s
range to acoustic wavefrofd-v) 4 10 km
[#] 41 s

Using Marshall's equation for signal-to-noise ration (SNR) for a RASS [Frankel and Peterson,
1976] allows the effective range of a RASS to be computed for ideal conditions. Figure 34
displays SNR versus range for the conditions listed in table 6. Acoustic attenuation of 0.9 dB/km
at 100 Hz was found in an article by Marshall et al., 1972. The acoustic power of 300 W was
estimated from ground measurements of a two-blade propeller over ground [Hubbard and
Lassiter, 1951] for a tip speed over Mach 1.2. Three hundred W corresponded to acoustic power
with a drive power of 362 hp. Figure 34 shows that RASS should work to ranges of 10 km for
the parameters given in table 6.

There are two other factors known to degrade the performance of RASS that could limit the
range performance below that predicted by figure 34. These are the effects of advection of the
acoustic wavefront by horizontal winds and the effects of turbulence in degrading the coherence
of the acoustic wavefront. For ground-based RASS, these factors limit the height coverage to a
few kilometers. We expect that variations in crosswinds over a 20- to 30-km path could
significantly shift the focal point of the acoustic wavefront, further reducing the backscattered
signal strength. This effect, combined with loss of coherence due to turbulence, will likely limit
the maximum range to distances less than 10 km, even for slow-moving aircraft, such as
helicopters.
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FIGURE 34. RASS SNR VERSUS RANGE

TABLE 6. CONDTIONS USEDIN PREOCTING SNR FOR ARBORNE RASS

Parameter Value

RF peak power 1 kW
Acoustic power 300 W
RF antenna gain 16 dB
Rarge resolution 1 km
Integration time 2s
Acoustic attenuation | 09 dB/km

4.3 SUMMARY OF TEMPERATURE PROFING RESEARCH.

In summay, neither of the horizontal temperature profjlilechniques invegjated were
considered promising eagh to warrant protyping or further ivestigation. The radiometer
technique is capable of Igirange profiling but results in v coarse spatial resolution and is
subject to errors that are difficult to account for in practicee RASS technique is cadabof
fine spatial resolution but has poor sensiitieyond a few kilometers rge. Findly, it is noted
that the multifrequety radar neural network was initigltrained to extract temperature profiles
along with liquid water content, MVD, andZD. Although the neral network was able to
profile temperature in the sénce of meagement errors, tise errors becameidgh as soon as
noise was added to the radar data.

5. MULTIFREQUENCY RADOME ANDLOSSES DUE TAQCE AND WATER.

Any radar or radiometer used for aing paential detectiorsystem will require a radoe as
pictured in fgure 35. A multiple frequey radome ca readly be desighed fran a solid
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dielectric by specifying radome thickness as a multiple of a half-wavelength at all frequencies.
This is readily achieved by selecting operating frequencies that are integer multiples of the
lowest frequency. For example, 10.5, 31.5, and 94.5 GHz form a set of three frequencies that are
all matched to a Rexolite radome 0.227 inch thick. Broader bandwidths can be achieved by
using a multilayer radome approach, which will allow any frequency combination to be used.
However, for the present analysis, the simplest single-layer design was employed.

Radomes are subject to ice and water buildup, both of which will have a significant effect on
power transmission and the measured radiometric brightness temperature. Loss can be computed
using a simple plane wave analysis, assuming the rectilinear geometry shown in figure 35. In
figure 36 the transmission of a dry radome and ice/water coated radome is plotted versus
frequency. Note that the dry radome has no transmission loss at the three design frequencies of
10.5, 31.5, and 94.5 GHz. Adding only 1 cm of ice and 0.3 mm of water significantly degrades
insertion loss. The additional two-way loss at 94.5 GHz for this case is over 7 dB. Similar
calculations were carried out in figures 37-40 for the response at 10.5, 31.5, and 94.5 GHz for
three different cases: ice coated radome versus ice thickness (figure 37); same case with 0.3 mm
coating of water (figure 38), and loss versus water thickness with and without ice (figures 39 and
40).

ice

antenna - environment

incident
plane wave

FIGURE 35. RADOME SHOWING ICE AND WATER BUILDUP

45



NVAVAVAVAVAVAVAYA:
E 15858 68 & B Ideal Radome | ]
o v e :
Dot :
R E
B3 :
6o o
| L 0} ’ ’ : H—
[ 0 Radome with 1-cm ice i
-4 , = N and 1-mm water coating N
: 5 5
[ 0 Te}
_5 EL I 5 1 L | g 1
0 20 40 60 80 10

Frequency in GHz

FIGURE 36. ONE-WAY TRANSMISSION LOSS OF DRY RADOME AND RADOME
COATED WITH 1 cm OF ICE AND 0.3 mm OF WATER

05
m |
© I
£ .10
w L
w L
2 :
15 ) ;
I 105GHz ———
31.5 GHz
L 945GHz --------- ]
2%0 02 04 06 08 10

ice thickness in cm

FIGURE 37. TRANSMISSION LOSS AS A FUNCTION OF ICE THICKNESS

46



............ P2
------ P
0 F T T T T 3
1| 31.5 GHz
m ¢ o
C.2F 3
£
B3¢ :
o ¢ y y
4 _ 9;4.5 C;‘qu \ E
5t

00 02 04 06 08 10
ice thickness in cm

FIGURE 38. TRANSMISSION LOSS AS A FUNCTION OF ICE THICKNESS
WITH 0.3-mm COATING OF WATER

m I
T 4+ E
£ Z
o I
0w -6r 3
9O ' 10.5 GHz
31.5 GHz ]
-8 i 94.5 GHz------ E
10,

o o n o N o o o N o n o N o & o 4
0.0 0.2 0.4 06 08 1.0
water thickness in mm

FIGURE 39. TRANSMISSION LOSS AS A FUNCTION OF WATER THICKNESS
ASSUMING ICE THICKNESS OF 1 cm

47



2L 4
m
© 4t i
£
B -6 ]
9o
10.5 GHz
-8 r 315 GHz - .
945GHz - ]
ol ]
0.0 0.2 04 0.6 0.8 1.0

water thickness in mm

FIGURE 40. TRANMISSION LOSS AS A FUNCTON OF WATER THCKNESS
WITHOUT ICE

Nose radomes coveg X-band weather dars do not need to be deiced singbsolute
calibration is not critical and two-ay loss due to ice buildup is wer more han 3 dB. For the
current application, radomdeicing will assure that the loss aitgher frequenes is as low as
possible, a critical issue when sensitivs at a premium.

Loss due to water is difficult to qualytiwithout a knovwedge of water thickess as function of
deposition rate, air speed, and radomepshalt is unlikdy that water would xceeda few
hundred micrometers in thickness for nonprecipitationditions. It is possible to monitor water
build-up usirg capacitive probes embedded in the radome. Thisdvalidw the system to
compensate for the frequsndependent water lossmformation that could be usdy theneural
network inversion lgorithm orby a radiometric charel.

Dr. Goodbelet has prpared a short report (ppndix B) on the effects of radome water and ice
on the temperature profigradiomeer.

6. PROPOSED PROTOTYPE SYSTEM DIEN.

The protaype system will be used as asaarch tool to evaluate the abjlito detect icing
potential under a wide mge of conditions. As such, it should be ideed with as much
sensitivty as possible and should include at least a singlariptetric channel. Qadrant
recommends that a proype multiparameter radaystem fo researchapplications include the
following components:

. Three-fregiercy radar sharig a common antenna

. Limited scan capabitl to allow samplig of common volume at all three frequess
. Tube-powered transmitters at all three frequencies

. Dual polarized X-band chael confgured to measurg;,
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A block diagram of the proposed prototype system is shown in figure 41. Most of the
components will be mounted separately from the scanning unit, although the 95-GHz
components must be mounted to the antenna to minimize waveguide loss. The details of exactly
how the scanning mechanism will be implemented will be worked out during the design phase.
For example, it may be possible to scan the subreflector or use a pair of dielectric wedges for
scanning.
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FIGURE 41. SYSTEM BLOCK DIAGRAM OF THE PROPOSED
MULTIFREQUENCY RADAR

Specifications for the radar are provided in table 7. The transmitters consist of a modulator and
transmit tube, probably a magnetron at 10 GHz, and an extended interaction klystron oscillator
(EIKO) at 35 and 95 GHz. By using an oscillator-based system, as opposed to a fully coherent
system using power amplifiers, significant savings can be achieved on the cost of millimeter
wave sources, waveguides, switches, etc. Since no Doppler measurements are proposed, savings
can also be realized in the cost of the data acquisition system. Instead of coherent detection, the
proposed design uses simple log detectors and noncoherent integration circuitry. This will
greatly simplify receiver design and data acquisition requirements.

A block diagram of the receiver is shown in figure 42. Each individual receiver will include a
low-noise amplifier (LNA), filter, mixer combination with a stable local oscillator (STALO) to
down-convert the signal to a few hundred MHz. An automatic frequency control (AFC) loop
(not shown) will control the frequency of the STALO to keep the scattered signal within the
passband of the receiver. The output of the log detector will be sampled by a 192 kilosample/
second multichannel digitizer (HP-E1433A or equivalent). These data can be processed in real
time by an on-board DSP processor (HP-E1485 or equivalent) to display range profiles of
reflectivity in flight. The VXI-to-SCSI interface will allow storage of all raw data, which is
essential for testing the inversion algorithm. Ancillary data generated by the INS, temperature
probes, and antenna position controller will be also be merged with the raw data stream.
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TABLE 7. SPECIFICATIONS FOR THE PROPOSED MULTIPARAMETER RADAR

Radar Frequencies
Parameter 10 GHz 35 GHz 95 GHz

Transmitter Magnetron EIKO EIKO
P;, dBm 70 62 62
Pulse repetition frequency, Hz 1.0-5.0 1.0-5.0 1.0-5.0, variable
Receiver noise figure, dB 2.0 3.0 4.0
Receiver bandwidth, kHz 75 75 75
Pulse lengthys 13.2 13.2 13.2
Antenna diameter, m 0.3 0.3 0.3
Antenna beamwidth, degrees 7.0 2.0 0.75
Range resolution, km 2.0 2.0 2.0
Number of range gate (max) 50 50 50

log detecior

Mixer

EPF

<,

STALO

VXto-SCSl interface

Digital signal pr {HP)

X-band receiver

log detecior

3 channel digitizer (HP)

systen control card

host computer (Pentium)

VXFMainframe

Mixer

EPF

A

STALO

Ka-band receiver

log detecior

Mixer

BPF

STALO

W-band receiver

FIGURE 42. RECEIVER BLOCK DIAGRAM
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7. CONCLUSIONS.

This report summarizes the results of our ingagion of remote sengj technobgies applicable
to the problem of remote iagypotential detection fromicraft. This investigation examined all
of the major technoljiesbeing considered for icindetection: multifrequesy radar, lidar, and
radiomety, as well as novel cmepts such as the airlmer RASSsystem. Multifrequacy radar
proved to be the most promising method detecting cloud parameters, inchgliliquid water
content, MVD, andMZD. The difficult problem of invertig cloud parameters from nge
profiles of refleted power was solved ungj aneural netvark.

A significant software development eff was undertaken to simulate randprmofiles of cloud
and precipitation conditions for training and testing tmeural network. This »@rcise
demonstrated that a twor three-frequecy radar coutl remotey detect cloud parametewith
kilometer-scale nage resolution, even in thgresence of sgnificant measurement error. The
range perfomanceof radars at 10, 35, and 95 GHz was also simulated)ysiblished statistics
on stratus clouds to show that the proposguicgeh is viable withxasting radarttechnobgy.

Instruments capéd of probng air temperature were also investigd, as tby may provide a
means of detecting regions of warmer air, foésupercooled drops. hE technabgies studied
for temperature profilig included multifrequecy radar, radiomey, and aradar-acoustic sensor.
None of thesetechnobgies wasdeemedpromising enagh to warrant further development
within the current gogram.

On March 10, 1998, @adrant Engieerng Inc. presented its findings to a review panel that
convened at the US Army Cold Regions Research agt&erng Laboratoy in Hanwer, New
Hampshire. Quadrant’s recommendation to the panel was to continue development of the three-
frequerty radar system and to continue development aedting of multifrequerty neural
network software. Efforts areucenly undervay to obtain &isting in-flight droplet
distributions that can be used to test neural oktwgoftware as well as to trainrew nairal

network tailored to actual drop-size distributions.must be emphasized that combinadar

and in situ measurements of clouds are essential to test the idelgpdd in this report.
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9. G_LOSSARY.

Drop-Size Distributionl The measured or mdeled distribution of drop diameters for clouds or
rain. Units are number of dropsr meter per cubic meter o,

FM-CW (Frequeny Modulaed Continuous Wave) Radar radar technique that replaces a
pulsed transmitter with a continuous wdsensmitter. Frequey modulation is used in place of
pulse modulation to allow measurements ofyeaand velody.

LidarJ Acronym for lightdetection and maging; a laser rdar.

Liquid Water Conteni The water content, in grams per cubic meter, of the liquid portion of the
cloud or precipitation.

Mean Volume Diamier (MVD)O Particle dameter corresponding to the mean of the volume
distribution. Volume distribution is computed from the given drop-size (diameter) distribution.
Note that median volume diameter is a more comynosed icng term.

Median Volume Diameter (MeVD) Partide diameter correspondj to the median of volume
distribution.

Mean Z Diaméer (MZD)[J Particle diaméer mrrespondng to mean cloud reflectity.

Mie Scattemgl] Mie scatteriig refers to the comple solution for electnmagnetic scattering
from dielectric speres as computdany G. Mie in 1908. This relativg complicatel formulation
is required when the parte size is within an order of rgaitude of the electrongmetic
wavelemth. Approximate formulas are often used in the opticaltlifdi>> A) and Rayleigh

limit (d << A) to simplify calculations.

Multiparameter Radar Radarsystem cgable of measung a vari¢y of parameters at one or
more fregencies. For a meteoaglical radar, theseparaneters include cloud reflectiy,
Doppler spetum of the scatteredignal (©r its moments), and four additional polarimetric
parameters includip linear deptarization ratd LDR, differential reflectivty Zy, and the
magnitude and phasé the copolarized correlation coefficiept,, .

Neural Network] A software &gorithm used to determine output parameters based on a network
of interconnected summing des with nonlinear response to the input. Tharadenetwork was
originally developed to imitate the function of interconnected braarons. Thdvasic building
block of neural networks are nonlinear summing nobasdre coupled to other des thraigh
connections with variable wghting factors. Thesweighting factors, alang with the transfer
function of the summing nodes, are adjusted to minimize estimation egrarsng a set of
known input and output vectors.

Polarimetric Radar Radar capablef measumg the pdarization transformation properties of
the scatterig volume. Polarimetric radars uslyalnclude a polarizationgde transmitter and
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dual-polarization receiver. Polarimetric information is used to characterize the shape and
orientation of particles within cloud or precipitation volume.

Radar Acoustic Sounding System (RASS technique that combines an acoustic source with a
UHF radar to remotely detect temperature by tracking the speed of sound.

Rayleigh Scattering Simplified scattering regime for particles much smaller than the
electromagnetic wavelength. For larger particles, on the order of the radar wavelength, the
complete Mie solution must be computed. Scattering from particles much larger than the
electromagnetic wavelength can be approximated using optical limit formulas.

Reflectivity, Z[1 Frequency-independent parameter equal to the sixth moment of drop-size
distribution. Reflectivity is proportional to backscattered power. The sixth moment arises from

the fact that the radar cross section of a small parﬁritl« /\) is proportional to the sixth power

of particle diameter. Reflectivity is typically expressed on a decibel scdBzZsvhich equals
10 logo (2).
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APPENDIX AL ATMOSPHERIC TEMPERATURE PROFILING BY RADIOMETERS

A.1 INTRODUCTION.

Meeks and Lilley [1963] and Westwater [1965] did some of the earliest studies on radiometer
temperature profiling. Decker et al. [1978] reported that ground-based radiometers operating
near the oxygen absorption line frequency of 60 GHz could profile atmospheric temperature to
an altitude of nearly 4 km with typical 1-2 K retrieval error. Atmospheric temperature profiling
from spaceborne radiometers was demonstrated with the launch of the Nimbus-E(5) Microwave
Spectrometer (NEMS) in 1972. Waters et al. [1975] reported that NEMS temperature retrieval
error was 2-4 K over much of the upper atmosphere. NEMS temperature retrieval error in the
lower atmosphere was significantly higher. Hogg et al. [1980] used a combination of several
ground-based sensors, including a temperature profiling radiometer, to detect aircraft icing
conditions near Stapleton International Airport in Denver, Colorado. This combined instrument
technique yielded good results but, due to the combined size and weight of the sensors, is
probably limited to ground-based operation. In this appendix we investigate the use of airborne
radiometers for near-horizontal atmospheric temperature profiling.

A.2 BACKGROUND.

Key Conceptsl Throughout this appendixangeis defined as a distance from the radiometer
measured along the antenna bore-site vector.

Radiometersensitivityto changes in atmospheric parameters (e.g., temperature, pressure, water
vapor, and cloud liquid) is defined as the change in radiometer measured brightness temperature,
Tg K, caused by a 1-unit change in the atmospheric parameter over a 1-km layer of the
atmosphere. In this definition of sensitivity, the 1-km atmospheric layer is positioned
perpendicular to the range vector. Sensitivity is plotted as a function of the range from the
radiometer to the atmospheric layer being perturbed. Others have called theseveighitsg
functions

Measurement Diversify Plots of sensitivity that are constant with range indicate that the
associated measurement has little value for temperature profiling. In general, radiometer
temperature profiling of the atmosphere requires many measurements of atmospheric brightness
temperature, each with an associated sensitivity curve that is unique from all asttidras
variation with range. Westwater et al. [1975] achieved diusrsity of measuremenising a
two-frequency (53.5 and 54.5 GHz) radiometer tilted to 30 different off-zenith angles. Angle
diversity can be used for vertical temperature profiling if one assumes (as Westwater did) that
the atmosphere is horizontally stratified. In order to use angle diversity for horizontal
temperature profiling, one must assume that the atmosphere is vertically stratified. This
assumption is generally incorrect, so frequency diversity becomes the primary method of
achieving the necessary measurement diversity for horizontal atmospheric temperature profiling.

Models and AssumptionsNear-horizontal temperature profiling performance of an airborne
radiometer operating in 50-60 GHz was investigat@dbrightness temperature measurement
error,AT, of about 0.1 K is probably the best that can be achieved for this system.



To permit calculation of radiometer sensitivity and atmospheric brightness temperature, we have
implemented in software the radiative transfer integral [Ulaby et al., 1986] and the atmospheric
models shown in table A-1.

TABLE A-1. MODELS FOR ATMOSPHERIC ABSORPTION OF MICROWAVES

Parameter Reference

Oxygen (Q) Liebe et al. [1992]

Water Vapor Cruz-Pol et al. [1996], Liebe et al. [1987]
Cloud Water Westwater [1974]

We have assumed that the atmosphere is spherically stratified (round Earth effects) and that the
vertical profiles for water vapor, temperature, and pressure are those of the 1962 U.S. Standard
Atmosphere [Ulaby et al., 1986]. Throughout this study we assume the radiometer to be at an
altitude of 2 km above sea level.

Inversion Algorithni] The Backus-Gilbert algorithm [Backus and Gilbert, 1970] [Westwater and
Cohen, 1973] is used to estimate the near-horizontal profile of atmospheric temperature from the
brightness temperature measurements of the radiometer. The Backus-Gilbert technique provides
convenient tools for studying temperature retrieval error, range resolution, and the tradeoff
between error and resolution.

A.3 ANALYSIS AND DISCUSSION.

Atmospheric Depthl Figure A-1 shows the altitude of an atmospheric element located at various
ranges from a radiometer as well as for various off-zenith radiometer tilt angles. Figure A-2
shows typical sky brightness temperatures seen by a radiometer poift@@° #if zenith.

Close to 60 GHz, a near saturation condition exists for the radiometer measurements (i.e.,
brightness temperature is approximately equal to ambient air temperature). This observation
suggests that radiometer measurements made at these frequencies have limited depth of
measurement. Indeed, figure A-3 shows that for frequencies between 55-60 GHz, the radiometer
measured brightness temperature is determined primarily by emission from the 10 km of
atmosphere immediately in front of the radiometer. However, for frequencies lower that 55
GHz, figure A-3 shows radiometer depth of measurement to be well over 30 km. Longer depth
of measurement is desirable for long-range temperature profiling but does make measurements
susceptible to contamination from long-range sources (e.g., ground emission).

Temperature Sensitivily Figure A-4 shows that radiometer measurements made in the 50- to
60-GHz band have good sensitivity to changes in atmospheric temperature. Temperature
sensitivity is the change in radiometer measured brightness temperature caused by a 1 K change
in air temperature over a 1-km layer of atmosphere (see also section A.2). These curves are for a
radiometer located 2 km above sea level in a U.S. Standard Atmosphere and titifdz6aith.

The family of temperature sensitivity curves shown in figure A-4 were achieved using frequency
diversity (see section A.2) but are very similar to the family of sensitivity curves which
Westwater [1975] achieved through angle diversity. This observation indicates that performance
(in terms of error and range resolution) of the horizontal temperature profiling radiometer should
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FIGURE A-2. OFF-ZENITH SKY BRIGHTNESS TEMPERATURE SEEN BY
RADIOMETER AT 2-km ALTITUDE
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Brightness Temperature Buildup
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be similar to that of Westwater's [1975] vertical temperature profiling radiometer (see
figure A-11 and the associated discussion in this appendix).

Sources of Errar Factors affecting atmospheric temperature profiling error generally fall into
one of the following three groups:

. Radiometer measurement error (i£el).
. Variations in the attenuation profile along the range vector.
. Variations in the background emission.

Radiometer measurement error depends on system design, bandwidth, and the averaging time
associated with the data [Tiuri, 1964]. A brightness temperature measuremererodrQ.1
K is readily achievable.

Atmospheric temperature profiling performance depends significantly upon how accurately the
attenuation profile along the range vector is known. Atmospheric attenuation in the 50- to 60-
GHz range at an altitude of 2 km is predominantly due to oxygen absorption but is affected by
other atmospheric constituents as shown in table A-2.

TABLE A-2. SOURCES OF ATMOSPHERIC ATTENUATION IN THE 50- TO

60-GHz BAND
Cause Attenuation (dB/km)
Oxygen (Q) 1-10
Clouds 1-10
Rain 0.1-10
Water Vapor (saturation) 0.1

Note that clouds and rain both attenuate microwaves in the 50- to 60-GHz band at a rate similar
to that of oxygen. Therefore, the range distribution of clouds, rain, and liquid water must be
accounted for during the atmospheric temperature retrieval process.

Background emission consists of cosmic and ground emission. Cosmic emission is constant at
about 2.7 K in the 50- to 60-GHz band but ground emission is variable. For the horizontal
temperature profiling radiometer, the portioa(gnd), of the total measured brightness

temperature which is attributed to ground emission can be calculated as

T,(gnd) = T.0S (A1)
where
S, :%TD,TL [ @8~ .0~ m)C1(0.0) sin@) D

G(0,p) is the radiometer antenna pattetr{8,¢) is attenuation of the atmosphere between the
radiometer and the ground along the path defined by spherical coordinate Graglesp, and
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Ts is the ground brightness temperature (assumed to be uniform). We define ti& tasnthe

ground sensitivityof the radiometer and note that it is the error in total calculated brightness
temperature caused by a 1 K error in the estimate of the ground tempé&iaturPjots of
radiometer ground sensitivity are shown in figures A-5 and A-6 where a Gaussian-shaped beam

pattern has been used to approximate the sidelobes of the antenna. These plots show that ground
sensitivity depends strongly upon radiometer altitude and beamwidth.

Ground Sensitivity
(U.S. Standard Atmosphere, 2-deg beam, Tilt=90)
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FIGURE A-5. SENSITIVITY OF RADIOMETER WITH 2-DEGREE BEAMWIDTH,
OPERATING IN THE 51- TO 56-GHz BAND TO GROUND
BRIGHTNESS TEMPERATURE
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Profiling Performandd This temperature profiling performance analysis assumes that the
radiometer field of view is free of clouds and rain. Attenuation due to rain or clouds will change
the shape of the weighting functions used in inverting temperature and will result in significant
errors if left uncompensated. If some other method is used to estimate attenuation due to liquid
water (e.g., multifrequency radar) then the inversion can be corrected to account for additional
attenuation. However, the presence of heavy clouds or rain between the radiometer and the
sample volume will bias the weighting functions to short ranges, making it impossible to sense
temperature at long distances.

The Backus-Gilbert (BG) technique [Backus and Gilbert, 1970] is used to calculate the
atmospheric temperature profile from radiometer brightness temperature measurements. The BG
technique utilizes a parameter, which varies between 0 and 1 and in many applications permits

a tradeoff between range resolution and temperature retrieval error. In general, values of the BG
parameterp, near 1 will result in high-range resolution and high-retrieval error. Values of

near O typically result in low-range resolution and low-retrieval error. However, significant
tradeoff between range resolution and temperature retrieval error does not appear possible for the
temperature profiling radiometer, and the reason for this is still under investigation.

Temperature profiling range resolution is defined as the half-height width of thev&@ging

kernel Averaging kernels demonstrate how values from the entire temperature profile are
weighted and averaged to produce the retrieved estimate of temperature at a particular range.
For all values of range, there is an associated averaging kernel. The range associated with a
particular kernel is located approximately at its centroid. The centroid of the averaging kernel
does not always coincide with the position of the kernel maxima.

The BG technique defines retrieval error in terms of a noise multiplication factor. For the
temperature profiling problem, retrieval error (K) is equal to this multiplication factor times the
brightness temperature measurement efdrof the radiometer.

Figures A-7 and A-8 show temperature profiling performance for the near 60-GHz radiometer as
determined by the BG technique with= 0.5. Brightness temperature measurements at 15
frequencies, spaced more or less evenly across the 50- to 60-GHz band, are the inputs to the BG
algorithm. Our computer simulations show that using values bfgher than 0.5 does not
significantly improve range resolution but will significantly increase retrieval error.

Temperature profiling to a range of about 4 km appears possible if radiometer measurements are
restricted to the 55- to 60-GHz band (see figures A-9 and A-10). These plots end at about 4-km
range because the BG technique cannot form well defined averaging kernels much beyond this
point. The advantage of the 55- to 60-GHz system is its limited depth of measurement and
resulting reduced sensitivity to ground contamination. Temperature profiling with this type of
system can probably be done in any direction from the aircraft, perhaps even towards the ground
if flight altitude is high enough.

Finally, we note that the horizontal temperature profiling performance curve (figure A-7) is
similar to Westwater's [1975] result, which is summarized in figure A-11. One finds that
temperature sensitivity of the near 60-GHz radiometer does not depend significantly on off-



zenith tilt angle or on flight altitude; hence, the performance of Westwater’'s [1975] ground-

based vertical temperature profiling system should be similar to that of the near-horizontal
temperature profiling system.

Temperature Profiling Range Resolution
(alpha=0.5, 50-60 GHz, alt=2 km, tilt=90)
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FIGURE A-7. HORIZONTAL TEMPERATURE PROFILING RANGE RESOLUTION
FOR THE 50- TO 60-GHz RADIOMETER AT ALTITUDE, 2 km
(Backus-Gilbert parameten, = 0.5)
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FIGURE A-8. HORIZONTAL TEMPERATURE PROFILING RETRIEVAL ERROR FOR
THE 50- TO 60-GHz RADIOMETER AT ALTITUDE, 2 km, WITAT =0.1 K
(Backus-Gilbert parametex, = 0.5)
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Temperature Profiling Range Resolution
(alpha=0.5, 55-60 GHz, alt=2 km, tilt=90)
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FIGURE A-9. HORIZONTAL TEMPERATURE PROFILING RANGE RESOLUTION FOR
THE 55- TO 60-GHz RADIOMETER AT ALTITUDE, 2 km
(Backus-Gilbert parametex, = 0.5)
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FIGURE A-10. HORIZONTAL TEMPERATURE PROFILING RETRIEVAL ERROR FOR
THE 55- TO 60-GHz RADIOMETER AT ALTITUDE, 2 km, WITAT =0.1 K
(Backus-Gilbert parametex, = 0.5)
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Temperature Profiling Range Resolution
(from Westwater [1975])
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FIGURE A.11. RANGE RESOLUTION OF A GROUND-BASED VERTICAL
TEMPERATURE PROFILING SYSTEM (After Westwater [1975])
(Associated temperature retrieval error is 1-2 K)

CONCLUSIONS.

Temperature profiling using a 50- to 60-GHz radiometer will work with an accuracy similar to
vertical profiling radiometers (2-3 K, rms) when range resolution is scaled linearly (1:1) with
range. Designing the radiometer with a narrow beamwidth (2 degrees or less) is critical to
reducing contamination by ground temperature fluctuations. This implies an antenna aperture of
greater than 20 cm diameter. In addition, some auxiliary method must be used to correct for
liquid water and water vapor fluctuations. For example, the estimate of liquid water content
made by the neural network algorithm could be used to correct the radiometer data.

Several implementation problems suggest that the technique may not be practical. These
problems include correcting for liquid water at ranges beyond the detection capability of the
radar and accounting for loss due to water and ice on the radome. Also, the coarse range
resolution at long ranges (for example, 20-km resolution at 20-km range) may not afford the
resolution necessary for a useful icing avoidance system.
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APPENDIX B FRONT-END LOSS EFFECTS ON RADIOMETER PERFORMANCE

Ice forming on a radiometer antenna radome will cause the brightness temperatasegnTby
the radiometer receiver to be a combination of the apparent target brightness temperature, T
and other terms [Hardy et al., 1974] as shown in equation B-1.

Ta=Ta (14 )Q1) +1 T +r Tr (B-1)

In equation B-1r is ice reflective losd,is ice ohmic loss, [T(K) is ice physical temperature and
Tr (K) is the brightness temperature of the radiometer receiver noise propagating towards the
antenna. The valuesandl vary between zero (no loss) and one (no transmission).

The accuracyAT4 (K), with which the radiometer can measurg i determined solely by

radiometer receiver parameters. For a Null Feedback Dicke-Switched receiver d&gign,
given by equation B-2 [Tiuri, 1964],

AT4=2 Tsys/ (BT) % (B-2)

where Tkys (K) is system noise temperature, B (Hz) is predetector bandwidth;, @)ds data

averaging time. Brightness temperature measurement accigcyK), will be affected by the
ice even ifr, |, and T are time invariant as shown in equation B-3 and in figure B-1.

ATp =ATa/ ((1+)( 1)) (B-3)

Ice also affects both the scate,and biasb, factors found in the radiometer calibration equation
used to convert radiometer output voltage, V, to a value\of T

Ta=aV+b (B-4)

For the typical values, T= 273 K and E = 300 K, the icing induced error (bias) in the calculated

value of Ty is shown in figure B-2. In practice, measurements of ambient air temperature can be
used to estimate, T Tr can be measured during laboratory calibration of the radiometer, and
should remain relatively constant with time.

The conclusion is that very little front-end loss can be tolerated if radiometer measurement

accuracy on the order of 0.1 K is desired. Our calculations predict that this amount of loss can
be caused by as little a 1-mm layer of water or ice on the antenna radome.
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